首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   615篇
  免费   101篇
  国内免费   234篇
测绘学   13篇
大气科学   7篇
地球物理   110篇
地质学   674篇
海洋学   59篇
天文学   27篇
综合类   19篇
自然地理   41篇
  2024年   1篇
  2023年   9篇
  2022年   19篇
  2021年   27篇
  2020年   29篇
  2019年   30篇
  2018年   19篇
  2017年   21篇
  2016年   23篇
  2015年   17篇
  2014年   32篇
  2013年   49篇
  2012年   38篇
  2011年   36篇
  2010年   27篇
  2009年   37篇
  2008年   41篇
  2007年   46篇
  2006年   46篇
  2005年   29篇
  2004年   38篇
  2003年   33篇
  2002年   32篇
  2001年   31篇
  2000年   32篇
  1999年   31篇
  1998年   32篇
  1997年   31篇
  1996年   22篇
  1995年   19篇
  1994年   20篇
  1993年   11篇
  1992年   14篇
  1991年   6篇
  1990年   8篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有950条查询结果,搜索用时 15 毫秒
61.
《China Geology》2021,4(1):56-66
The timing of the initial Indo-Asian collision is a subject of debate for a long time. Besides, the magmatic trace of the collisional process is also unclear. In the present study, the authors report Early Eocene leucocratic sill/dike swarms in the northern edge of the Nymo intrusive complex of the Gangdese belt, southern Tibet. The Nymo intrusive complex was emplaced at ca. 50 –47 Ma and surrounded by the metamorphosed Jurassic-aged Bima Formation volcano-sedimentary sequence along its northern side. At outcrops, the leucocratic sills/dikes intruded along or truncated the deformed foliations of the host Bima Formation, which has been subject to high-temperature amphibolite-facies metamorphism at ca. 50 –47 Ma. Detailed cathodoluminescence image analyses reveal that the zircon grains of the leucocratic sills/dikes have core-mantle textures. The cores yield the Jurassic ages comparable to the protolith ages of the Bima Formation. In contrast, the mantles of zircon grains yield weighted mean ages of ca. 49–47 Ma, representing the crystallization timing of these leucocratic sills/dikes. The coeval ages for the Nymo intrusive complex, the high-temperature metamorphism, and the leucocratic sills/dikes indicate that a close relationship exists among them. The authors tentatively suggest that these leucocratic sills/dikes were generated from partial melting of the Jurassic-aged Bima Formation volcanic rocks, triggered by the high heat from the magma chamber of the Nymo intrusive complex. This Early Eocene tectono-thermal event of coeval magmatism, metamorphism and partial melting was most likely formed during the Indo-Asian collisional setting.©2021 China Geology Editorial Office.  相似文献   
62.
Metamorphic dehydration and partial melting are two important processes during continental collision. They have significant bearing on element transport at the slab interface under subduction‐zone P–T conditions. Petrological and geochemical insights into the two processes are provided by a comprehensive study of leucocratic veins in ultrahigh‐pressure (UHP) metamorphic rocks. This is exemplified by this study of a polymineralic vein within phengite‐bearing UHP eclogite in the Dabie orogen. The vein is primarily composed of quartz, kyanite, epidote and phengite, with minor accessory minerals such as garnet, rutile and zircon. Primary multiphase solid inclusions occur in garnet and epidote from the both vein and host eclogite. They are composed of quartz ± K‐feldspar ± plagioclase ± K‐bearing glass and exhibit irregular to negative crystal shapes that are surrounded by weak radial cracks. This suggests their precipitation from solute‐rich metamorphic fluid/melt that involved the reaction of phengite breakdown. Zircon U–Pb dating for the vein gave two groups of concordant ages at 217 ± 2 and 210 ± 2 Ma, indicating two episodes of zircon growth in the Late Triassic. The same minerals from the two rocks give consistent δ18O and δD values, suggesting that the vein‐forming fluid was directly derived from the host UHP eclogite. The vein is much richer in phengite and epidote than the host eclogite, suggesting that the fluid is associated with remarkable concentration of such water‐soluble elements as LILE and LREE migration. Garnet and rutile in the vein exhibit much higher contents of HREE (2.2–5.7 times) and Nb–Ta (1.8–2.0 times) than those in the eclogite, indicating that these normally water‐insoluble elements became mobile and then were sunken in the vein minerals. Thus, the vein‐forming agent would be primarily composed of the UHP aqueous fluid with minor amounts of the hydrous melt, which may even become a supercritical fluid to have a capacity to transport not only LILE and LREE but also HREE and HFSE at subduction‐zone metamorphic conditions. Taken together, significant amounts of trace elements were transported by the vein‐forming fluid due to the phengite breakdown inside the UHP eclogite during exhumation of the deeply subducted continental crust.  相似文献   
63.
The Himalayan mountains are a product of the collision between India and Eurasia which began in the Eocene. In the early stage of continental collision the development of a suture zone between two colliding plates took place. The continued convergence is accommodated along the suture zone and in the back-arc region. Further convergence results in intracrustal megathrust within the leading edge of the advancing Indian plate. In the Himalaya this stage is characterized by the intense uplift of the High Himalaya, the development of the Tibetan Plateau and the breaking-up of the central and eastern Asian continent. Although numerous models for the evolution of the Himalaya have been proposed, the available geological and geophysical data are consistent with an underthrusting model in which the Indian continental lithosphere underthrusts beneath the Himalaya and southern Tibet. Reflection profiles across the entire Himalaya and Tibet are needed to prove the existence of such underthrusting. Geodetic surveys across the High Himalaya are needed to determine the present state of the MCT as well as the rate of uplift and shortening within the Himalaya. Paleoseismicity studies are necessary to resolve the temporal and spatial patterns of major earthquake faulting along the segmented Himalayan mountains.  相似文献   
64.
The Main Zone of the Hidaka Metamorphic Belt is an uplifted crustal section of island-arc type. The crust was formed during early Tertiary time, as a result of collision between two arc–trench systems of Cretaceous age. The crustal metamorphic sequence is divided into four metamorphic zones (I–IV), in which zone IV is in the granulite facies. A detailed study of the evolution of the Hidaka Belt, based on a revised P–T–t analysis of the metamorphic rocks, notably a newly found staurolite-bearing granulite, confirms a prograde isobaric heating path, after a supposed event of tectonic thickening of accretionary sedimentary and oceanic crustal rocks. During the peak metamorphic event (c. 53 Ma), the regional geothermal gradient attained 33–40° C km?1, and the highest P–T condition obtained from the lowest part of the granulite unit is 830° C, 7 kbar. In this part, XH2O of Gt–Opx–Cd gneiss is about 0.15 and that of Gt–Cd–Bt gneiss is 0.4. The P–T–XH2O condition of the granulite unit is well within a field where fluid-present partial melting of pelitic and greywacke metamorphic rocks takes place. This is in harmony with the restitic nature of the Gt–Opx–Cd gneiss in the lowest part of the granulite unit. The possibility that partial melting took place in the Main Zone is significant for the genesis of the peraluminous (S-type) granitic rocks within it. The S-type granitic rocks in this zone are Opx–Gt–Bt tonalite in the granulite zone, Gt–Cd–Bt tonalite in the amphibolite zone, and Cd–Bt–Mus tonalite in the Bt–Mus gneiss zone. The mineralogical and chemical nature of these strongly peraluminous tonalitic rocks permit them to be regarded as having been derived from S-type granitic magma generated by crustal anatexis of pelitic metamorphic rocks in deeper crust.  相似文献   
65.
陆内碰撞体制流体作用及成矿作用研究的意义和现状   总被引:11,自引:0,他引:11  
陆内碰撞作用和流体作用都是80年代以来的研究前沿,它们的研究必然会大大促进成矿作用研究的发展,也是跟踪和超越世界地球科学先进水平的重要途径。中国拥有最多最复杂的陆内碰撞带,为中国学者开发有关研究并取得高水平成果提供了得天独厚的条件。对陆内碰撞、流体作用和成矿作用研究现状的分析表明,三者之间研究的相互结合是薄弱环节,限制了有关问题的深入,但为我国学者开发该方向的研究,取得领先于国家水平的成果,提供了  相似文献   
66.
Kyoko  Okino Yukihiro  Kato 《Island Arc》1995,4(3):182-198
Abstract The Nankai Trough, off southwest Japan, is one of the best sites for the study of geomorphic characteristics of a clastic accretionary prism. A recent multibeam survey over the central and eastern parts of the Nankai accretionary prism has revealed a large variation of the topography along the trough axis. Analysis of the bathymetric data suggests the existence of prism deformational features of different scales, such as depressions, embayment structures and cusps. These structures are the results of slope instability caused by basement relief of subducted oceanic plate. Unstable slopes recover by new accretion and development of a low angle thrust. Small-scale deformation due to the subduction of a small isolated seamount is then adjusted to the regional trend. By contrast, a 30 km indentation of the wedge observed in the eastern part of the Nankai Trough, the Tenryu Cusp, has seemed to retain its geometry. The subducted Philippine Sea plate has deformed greatly near the eastern end of the Nankai Trough, because of the collision between the Izu-Ogasawara (Bonin) arc and central Japan. Therefore, the indentation may be the result of the continuous subduction of a basement high, such as the Zenisu Ridge, which has been formed under north-south compression due to the arc-arc collision.  相似文献   
67.
We present a special model which is a caricature of the collinear three-body problem. Near triple-collision behavior for the model is governed by the collision manifold. We study the bifurcations of the dynamics on this manifold as we vary the ratio of masses. Both analytic and numerical results are presented.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   
68.
69.
大别山碰撞造山带的地球动力学   总被引:33,自引:4,他引:33  
王清晨  林伟 《地学前缘》2002,9(4):257-265
大别山碰撞造山带的形成和其中超高压变质岩的形成折返具有统一的动力学过程。对大别山超高压变质岩形成 -折返的研究表明 ,大别山的超高压变质作用是冷大陆地壳被前导洋壳下拽而持续俯冲的结果。超高压变质岩的折返是多阶段的。第一阶段 (2 30~ 2 10Ma)在低地温梯度 (约10℃ /km)下发生同俯冲折返 ;第二阶段 (2 10~ 170Ma)的折返由深俯冲板片的断离引发 ,浮力开始起作用 ;第三阶段 (170~ 12 0Ma) ,以区域性岩浆活动、穹隆伸展构造活动和深剥蚀沉积为特征。从分析超高压变质岩的形成折返过程入手 ,以侏罗纪末作为时间参照点 ,以合肥盆地的侏罗系顶界作为当时的地理参照点 ,根据不同岩石单元中岩石的形成深度和碰撞造山中的位移状态 ,可把大别山碰撞造山带划分为原位系统、准原位系统、异位系统和热穹隆改造系统等结构单位。陆陆碰撞造山带形成的物理学前提是俯冲陆壳物质的低密度 ,而最终形成造山带的直接动力学过程则是深俯冲板片的断离及其引发的一系列近垂向运动的地质过程。  相似文献   
70.
On Continent-Continent Point-Collision and Ultrahigh-Pressure Metamorphism   总被引:4,自引:0,他引:4  
Up to now it is known that almost all ultrahigh-pressure (UHP) metamorphism of non-impact origin occurred in continent-continent collisional orogenic belt, as has been evidenced by many outcrops in the eastern hemisphere. UHP metamorphic rocks are represented by coesite- and diamond-bearing eclogites and eclogite facies metamorphic rocks formed at 650-800℃ and 2.6-3.5 GPa, and most of the protoliths of UHP rocks are volcanic-sedimentary sequences of continental crust. From these it may be deduced that deep subduction of continental crust may have occurred. However, UHP rocks are exposed on the surface or occur near the surface now, which implies that they have been exhumed from great depths. The mechanism of deep subduction of continental crust and subsequent exhumation has been a hot topic of the research on continental dynamics, but there are divergent views. The focus of the dispute is how deep continental crust is subducted so that UHP rocks can be formed and what mechanism causes it to be subducte  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号